Exam Algebraic Structures, Thursday May 7th 2015, 18.30-21.30. (Possible points: 40, including 4 for free.)

(1) Given the ring $R=\mathbb{Z}[\sqrt{-23}]$ and in it the ideal
$I=R \cdot 3+R \cdot(1-\sqrt{-23})$. Present complete arguments for all assertions.
(a) [2 points] Is I a principal ideal?
(b) [2 points] Is I maximal?
(c) $[2$ points $]$ Show that $I^{2}=(9,1+5 \sqrt{-23})$.
(d) [2 points] Show that $I^{3}=(2+\sqrt{-23})$.
(e) [2 points] Is $2+\sqrt{-23} \in R$ irreducible?
(f) [2 points] Is R Euclidean?
(2) In this exercise n is an integer and $f_{n}:=x^{3}+n x^{2}+(n+1) x-1$.
(a) [2 points] Show for all $n \in \mathbb{Z}: f_{n} \bmod 2 \in \mathbb{F}_{2}[x]$ is irreducible.
(b) [2 points] For which $m>0$ does $f_{n} \bmod 2$ split completely in $\mathbb{F}_{2^{m}}[x]$?
(c) [2 points] Show that for all $n \in \mathbb{Z}$ the polynomial $f_{n} \in \mathbb{Z}[x]$ is irreducible.
(d) [2 points] Does $n \in \mathbb{Z}$ exist such that f_{n} has a multiple zero in \mathbb{C} ?
(e) [2 points] Show that for all odd prime numbers $p, n \in \mathbb{Z}$ exists such that $f_{n} \bmod p \in \mathbb{F}_{p}[x]$ has a factor of degree 1 .
(f) [2 points] Show that for every $n \in \mathbb{Z}$ it holds that $f_{n} \in \mathbb{Z}[i][x]$ is irreducible (here $i^{2}=-1$).
(3) This exercise discusses the polynomial $x^{q}-x-1$ over the finite field \mathbb{F}_{q}.
(a) [2 points] Show that $x^{3}-x-1 \in \mathbb{F}_{3}[x]$ is irreducible.
(b) [2 points] Show that $x^{8}-x-1 \in \mathbb{F}_{8}[x]$ is reducible. (Hint: first show that if α in some extension field of \mathbb{F}_{8} satisfies $\alpha \neq 1$ and $\alpha^{3}=1$, then α is a zero of $x^{8}-x-1$.)
(c) [2 points] Prove for all possible q that $x^{q}-x-1$ has no zero in \mathbb{F}_{q}.
(d) [2 points] Show that if β is a zero of $x^{q}-x-1$ in a splitting field over \mathbb{F}_{q}, then $x^{q}-x-1=\prod_{a \in \mathbb{F}_{q}}(x-\beta-a)$.
(e) [2 points] From now on let $q=p$ be a prime number, and let K be a splitting field of $x^{p}-x-1$ over \mathbb{F}_{p}, and $\varphi: K \rightarrow K$ is the automorphism that raises every element of K to the power p. Show that if $\beta \in K$ is a zero of $x^{p}-x-1$, then $\varphi(\beta)=\beta+1$. Use this to prove that φ has order p.
(f) $[2$ points $]$ Show that if $\beta \in K$ is a zero of $x^{p}-x-1$, then $\left[\mathbb{F}_{p}[\beta]: \mathbb{F}_{p}\right]=p$. Conclude that $x^{p}-x-1 \in \mathbb{F}_{p}[x]$ is irreducible.

