Exam Algebraic Structures, Thursday May 7th 2015, 18.30–21.30. (Possible points: 40, including 4 for free.)

- (1) Given the ring $R = \mathbb{Z}[\sqrt{-23}]$ and in it the ideal
 - $I = R \cdot 3 + R \cdot (1 \sqrt{-23})$. Present complete arguments for all assertions.
 - (a) [2 points] Is I a principal ideal?
 - (b) [2 points] Is I maximal?
 - (c) [2 points] Show that $I^2 = (9, 1 + 5\sqrt{-23})$.
 - (d) [2 points] Show that $I^3 = (2 + \sqrt{-23})$.
 - (e) [2 points] Is $2 + \sqrt{-23} \in R$ irreducible?
 - (f) [2 points] Is R Euclidean?
- (2) In this exercise n is an integer and $f_n := x^3 + nx^2 + (n+1)x 1$.
 - (a) [2 points] Show for all $n \in \mathbb{Z}$: $f_n \mod 2 \in \mathbb{F}_2[x]$ is irreducible.
 - (b) [2 points] For which m > 0 does $f_n \mod 2$ split completely in $\mathbb{F}_{2^m}[x]$?
 - (c) [2 points] Show that for all $n \in \mathbb{Z}$ the polynomial $f_n \in \mathbb{Z}[x]$ is irreducible.
 - (d) [2 points] Does $n \in \mathbb{Z}$ exist such that f_n has a multiple zero in \mathbb{C} ?
 - (e) [2 points] Show that for all odd prime numbers $p, n \in \mathbb{Z}$ exists such that $f_n \mod p \in \mathbb{F}_p[x]$ has a factor of degree 1.
 - (f) [2 points] Show that for every $n \in \mathbb{Z}$ it holds that $f_n \in \mathbb{Z}[i][x]$ is irreducible (here $i^2 = -1$).
- (3) This exercise discusses the polynomial $x^q x 1$ over the finite field \mathbb{F}_q .
 - (a) [2 points] Show that $x^3 x 1 \in \mathbb{F}_3[x]$ is irreducible.
 - (b) [2 points] Show that $x^8 x 1 \in \mathbb{F}_8[x]$ is reducible. (Hint: first show that if α in some extension field of \mathbb{F}_8 satisfies $\alpha \neq 1$ and $\alpha^3 = 1$, then α is a zero of $x^8 x 1$.)
 - (c) [2 points] Prove for all possible q that $x^q x 1$ has no zero in \mathbb{F}_q .
 - (d) [2 points] Show that if β is a zero of $x^q x 1$ in a splitting field over \mathbb{F}_q , then $x^q x 1 = \prod_{a \in \mathbb{F}_q} (x \beta a)$.
 - (e) [2 points] From now on let q = p be a prime number, and let K be a splitting field of $x^p - x - 1$ over \mathbb{F}_p , and $\varphi : K \to K$ is the automorphism that raises every element of K to the power p. Show that if $\beta \in K$ is a zero of $x^p - x - 1$, then $\varphi(\beta) = \beta + 1$. Use this to prove that φ has order p.
 - (f) [2 points] Show that if $\beta \in K$ is a zero of $x^p x 1$, then $[\mathbb{F}_p[\beta] : \mathbb{F}_p] = p$. Conclude that $x^p - x - 1 \in \mathbb{F}_p[x]$ is irreducible.